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Abstract. In this paper we develop the short-time propagator for the Boltzmann-Fokker- 
Planck equation in arbitrary coordinates thereby extending our previous result which was 
carried out in special coordinates. This treatment uses the approach developed by Graham 
which uses the diffusion matrix as the metric tensor. We examine the connection between 
the covariant formalisms of Graham and that of Rosenbluth et a/, showing that both 
formulations lead to the same form of the invariant partial differential equation for a scalar 
density distribution function. However, the Graham formulation has a major advantage 
over that of Rosenbluth ef a/ ,  in that it is the only one which has been able to set up a 
functional integral for the general form of the Fokker-Planck equation. We have here 
extended Graham’s results for the functional integral expression of the short time in general 
coordinates for the Boltzmann-Fokker-Planck equation and then illustrated the use of this 
formulation in setting up the short-time propagator for the problem of globular clusters. 

1. Introduction 

The main purpose of this paper is to show the way in which one introduces the path 
integral solution for short times consistent with the Boltzmann-Fokker-Planck equation 
(BFPE) in an arbitrary set of coordinates, thereby extending the results of an earlier 
paper. In particular we shall work out the details for an important case study of certain 
globular cluster models which have isotropic velocity background, in a suitable frame 
of reference. With the specific symmetry, the number of relevant dimensions reduces 
to three. 

In the early 1940s Chandrasekhar had presented the Boltzmann-Fokker-Planck 
equation ( BFPE) governing the distribution function in phase space, together with its 
associated short-time transition probability [ 1,2]. In these works the BFPE was obtained 
for the case of Cartesian coordinates while its corresponding short-time transition 
probability was introduced only the case of a diagonal diffusion matrix. 

In a famous paper in 1957, Rosenbluth et a1 [3] presented a covariant formulation 
of the BFPE based on the general transformations of the velocity which preserve its 
norm. In that formulation the distribution functionfR appearing in the BFPE is identified 
as a scalar. In  1977 Graham [4] introduced another covariant formulation of the 
Fokker-Planck equation (FPE) based on  the choice of the inverse of a general diffusion 
matrix Q’I” as the metric tensor. In Graham’s analysis the distribution fG is a scalar 
density and he defines an associated scalar distribution function S for writing down 
the covariant form of the FPE. Graham shows the way to build up the path integral 
solution for such an equation [4,5] while, together with Deininghauss [6], he derived 
an appropriate short-time propagator. 
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Rosenbluth’s covariant formalism was extensively exploited for numerical calcula- 
tions exploiting simplifications obtained by coordinate transformations for the BFPE 
[7]. However, it was not clear how to present the path integral solution for that 
equation. In 0 2 we prove the equivalence of Rosenbluth’s and Graham’s formulations 
of the BFPE (via the introduction of a scalar density distribution function fR associated 
with the scalar distribution function fR) .  In that section we also extend Graham’s 
covariant formulation to phase space. 

The unification of Chandrasekhar’s results, in which he presented the structure of 
the short-time transition probability in phase space for a specific case, with those of 
Graham leads in § 3 to the introduction of the short-time propagator for the BFPE in 
an arbitrary coordinate set, a genuine result of that paper. 

In 0 4 we investigate in detail a specific class of globular cluster models. We 
establish the appropriate BFPE for the scalar density distribution function fG = f R  and 
introduce its associated short-time transition probability. 

2. Covariant formulation of the BFPE 

The Boltzmann equation for the change of one type of particle distribution function 
in Cartesian phase space is given by 

where fR is the number of particles per unit volume in Cartesian phase space (x, U) 
and B” denotes the components of an external or self-consistent force field per unit 
mass. The term (afdat)c represents the change in the distribution function produced 
by collisions. The subscript R is introduced to differentiate between Rosenbluth’s 
scalar distribution function fR and Graham’s scalar density distribution function fG . 

In suitable circumstances ( a jda t ) ,  takes the form of the Fokker-Planck collision 
term: 

where ( A V ” )  is the average change per unit time of the Fth component of the velocity 
due to collisions, while (AV’ AV”)  is the corresponding average of mixed components. 
The FPE is valid if the averages of higher order may be neglected. Equation (2) may 
also be written as a conservation equation: 

where FE =fR(v’) -$a(fR(Av’Av”))/av” denotes the probability current flux. The 
joining together of (1) and (2) leads to the BFPE: 

(4) &+ V F  -+ a f R  B M - =  a f R  -- a f R ( v ’ ) + I  d2( fR(AuClAvY))  

a t  ax’ av’ a v w  2 a v p a u ”  
For exploiting the symmetries of a given problem it is desirable to write the BFPE 

in a covariant form. Rosenbluth et a1 [3] have already presented such a framework. 
In their formulation the usual metric of dsR between two adjacent points in velocity 
subspace is chosen as 

(dSR)’ = (gR)’” do” dv’. ( 5 )  
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The condition for conservation of the number of particles in a small volume element 
d V  is a scalar equation f d V =  fR& d3v. Since, in the case of Cartesian coordinates, 
gR = 1, this reduces to the standard conditions with fR being seen to be a scalar. The 
drift K L  and the diffusion matrix Qp” defined, respectively, as 

K L = ( A v ” )  

Q y p  = ( A v ” A v p )  

are observed to transform like a contravariant vector and tensor, respectively. Under 
these considerations the Rosenbluth covariant form of the BFPE becomes 

where ; denotes covariant differentiation with respect to the above-mentioned metric 

We shall be interested in the covariant BFPE (7) in a slightly different form. The 
term BpafR/aup may be transferred to the RHS of the equation. Then one sees that 
the following relation holds: 

( g R ) p u *  

Since B”; ,  = B y , y  = 0 in Cartesian coordinates due to the independence of the force 
term on the velocity this, of course, holds in arbitrary coordinates. If we now define 
I?; as a new drift term which includes the change of the velocity due to the presence 
of the force B as follows: 

~ ; ; = K ~ + B W  ( 9 )  

we can write the covariant BFPE in the form: 

This form is more suitable for introducing the short-time transition probability associ- 
ated with the BFPE (cf § 3). 

Let us limit ourselves for the meantime to the case where the distribution function 
does not depend on the spatial coordinate x. For this case we have a Fokker-Planck 
equation with the inclusion of the force term in the drift KR: 

a f R / a t  = - v R k ~ ) , ,  + i ( f R Q ” ” ) ; u ; p .  ( 1 1 )  

Using the explicit formulae of tensor analysis [8], equation (11) may also be written 
in the form: 

where g R  = det(gR),, and R r ) t v  is the Christoffel symbol of the second kind related to 
the metric ( g R ) u p .  Multiplying both sides of (12) by J g R  and rearranging terms, we 
get the following equation: 
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where 

!R = 6 d R  (14) 

is the scalar density distribution function associated with the scalar distribution function 
fR. Equation (13) for fR has the same form of partial differential equation in any 
coordinates. However, (13) is not manifestly convariant as it stands. 

In 1977 Graham presented a different covariant formulation of the Fokker-Planck 
equation [4 ,5] .  He showed that the diffusion matrix Q””(u) transforms like a tensor 
under coordinate transformations?. Since Q”” is a positive definite symmetric tensor, 
its inverse QYCl has the same properties and can be taken to play the role of a metric. 
The covariant length ds, is defined as follows: 

(ds,)2= QuwdvY d d ‘  =(gG)”@ do” dv+ (15) 

where 

= Qyll Qy,Q”” = &P. 

For a given FPE in  the velocity subspace we have the equation 

Graham identifies the distribution functionf, as a scalar density (which thus differs 
from fR which is a scalar). He then defined a scalar density S :  

f c  = 6 s  (18) 

d i2=&dv  (19) 

where g, = det[(g,),,]. If we introduce an invariant volume element, di2, 

where 
3 

d o =  n dv’ 
, = 1  

we get the covariant condition for conservation of the number of particles located in 
a certain volume element: 

fG d o =  s d n .  (20) 
Graham shows that the drift term Rk does not transform like a vector and he replaces 
it by the covariant drift h”,  defined as follows: 

We note that in (17) and (21) we have a drift term 8; which is different from the 
drift term in Rosenbluth’s formulation. Introducing S and h into (17) and transforming 
ordinary derivatives into covariant ones with respect to Graham’s metric, the following 
covariant form of the FPE is obtained: 

(22) s = -[ h ”S - L( 2 gGpS);vl;r = - % ; v  

t Graham’s exposition was based on the analysis of the relations between the Langevin equation and the 
FPE. The tensor properties of Q” may be derived directly by the product of Ao‘Av” of the velocity 
differentials in the new coordinate system expressed as a Taylor expansion of the old coordinate differentials 
to give ( A u ” A u w )  = ( J o ” / J u ~ ) ( J v ” / J v s ) ( A v a A o a ) + O ( A o 3 ) .  
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where F& is the covariant probability current. Graham’s covariant approach ensures 
that, in any frame of reference, the partial differential equation for the scalar density 
fG retains its form as in  (17 ) .  A pro2f of that property is given in appendix 1 .  

We will now show that (13)  for f R  and (17)  for f G  are equivalent. Let us denote 
by .g, the value of g G  in Cartesian coordinates in the velocity subspace. For a 
non-constant diffusion coefficient Q ” ” ( u ) ,  ,g, is non-constant as well. On the other 
hand, &R, the value of g R  in Cartesian coordinates, is unity. If we write the transforma- 
tion law for .ggZ and ,gk” from the Cartesian coordinates ua to the new coordinates 
u p ,  we have the relations 

where / a u “ / a C P  1 denotes the Jacobian of the transformation. From these equations 
we find that JgG is related to J g R  by 

V’gG = J c g G  Jg R . (25)  

By using the fact that S is a scalar, with (18) we obtain 

s= c f G / J c g C = f G / J g G  

where JG denotes the Graham distribution function in Cartesian coordinates. Using 
( 2 5 )  we find 

(27) 
By demanding that both fR and fG correspond to the same number of particles in a 
particular Cartesian volume element du(,fG du = fR& du),  we get the simple connec- 
tion between Graham’s and Rosenbluth’s distribution functions: 

fG = JZ ,fG . 

fC =fRJgR = ?R. (28) 

We see that fG is just Rosenbluth’s scalar distribution function multiplied by the 
corresponding scalar density J g R .  Looking back at (13) and (17) we find them to be 
identical on condition that the drift terms can be identified; the proof of this is given 
in appendix 2. We thus conclude that both covariant approaches ba;ed on different 
metrics lead to the same partial FPE for the scalar density distribution f R  = GdR =fG, 

(29) afR/at = - ( ~ R K ~ ) , ~  + K ~ R R Q ~ ~ ) . ~ , , ,  . 
Now we return to the spatial dependence of the BFPE. In its first version (7) we 

have on the LHS the total derivative DfJDt. Since the term BP afR/av” has already 
been transferred into the RHS of the equation, we are left only with the term uPafR/aXP. 
The scalar nature of this term is retained by simply expressing the old coordinates v’ 
in terms of the new ones 3”( U” = U”( 6’)). Graham did not treat the case with spatial 
dependence. However, using the above derived relations between Graham’s and 
Rosenbluth’s quantities, we can express the BFPE (equation (7 ) )  in terms of S and f G .  
From (181, (25) and (281, we obtain 

s = f R ( c g G ) - ’ / * .  

If we divide (29) by ( c g G ) ’ / * ,  we get the BFPE for s: 
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We observe that an additional scalar term was added with respect to the original form 
in which S is multiplied by the spatial derivative of the Graham metric determinant 
in the Cartesian coordinate frame. Multiplying (29) by Jg ,  and using the equivalence 
of (17) and (13) leads to the BFPE for f c ,  

We note that in (31) a new term was added due to the possible dependence of the 
stochastic process on the spatial coordinates. That dependence caused the appearance 
of the spatial derivatives a G / a x @ .  On the other hand, JgR is free of such dependence 
and so (13) and (32) for fR and f c ,  respectively, take a similar form. Thus we have 
established the relationship between Rosenbluth’s and Graham’s covariant formula- 
tions. It is to be observed that Graham’s covariant approach is adaptable to any FPE 

in any physical space (e.g., thermodynamic coordinates). The partial differential 
equation (32) was shown by Graham to be a convenient basis for defining a functional 
integral expression for solutions of the FPE, something which no one has been able to 
do in the Rosenbluth formalism. Here we are concerned with the short-time transition 
probability arising in Graham’s approach. 

3. Short-time transition probability for the BFPE 

Chandrasekhar’s expression for the short-time transition probability consistent with 
the BFPE equations (10) and (29), takes the fonn 

~ ( t ,  xO, DO, AX, Au, ~ ) = ‘ l ’ ( t ,  xO, 00, Au, T ) ~ ~ ( A x - ~ , - , T ) .  (33) 

x ( t ,  xo, uo, Ax, Au, 7)  d3(Ax) d3(Au) is the probability that the particle located at a 
prepoint (xo, uo) at time t will be within phase space volume d3(Ax) d3(Av) around 
the postpoint (x, U) at a later time t 1- 7, where Ax = x - xo and A u  = U - uo. x has the 
structure of a transition probability 9 in the velocity subspace located at the spatial 
point xo multiplied by a delta function which causes the particle to advance in space 
just by its velocity uo. Chandrasekhar’s transition probability $ was obtained for 
Cartesian coordinates and for a diagonal diffusion matrix only. These limitations may 
be removed if we use the short-time transition probability of Deininghauss and Graham 
( DG) instead of Chandrasekhar’s $. That short-time transition probability, also known 
as the short-time propagator, is derived as the discrete expression for the path integral 
solution of the FPE. The explicit DG expression of the short-time propagator takes the 
form 
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where 7 = U - uo and R is the scalar curvature with the Graham metric. The various 
coefficients of the power series in 11 are given by the following relations: 

C u p  =-‘R 12 al3 --{ ; a ( g . h ” ) / a v . ) u p  (35a) 

where R,, is the Ricci tensor and 

G a p ~ ~ E ~ = ~ { ( a O . . l a ~ ’ ) ( a Q . . l a ~ ’ ) } , p , s , ~  (35d) 

where the curly brackets denote complete symmetrisation. Substituting (34) into (33) 
gives the short-time transition probability consistent with the most general BFPE. In 
arbitrary coordinates: 

x ( t, xO,  UO , AX, A U )  = ‘4’Dc( t, XO , UO , A U, 7 )  6 3( AX - U ( U )  7 ) .  (36) 

This short-time transition probability actually reproduces the BFPE, equation (32). The 
delta function reproduces the term u”JfG/ax’, while $DG reproduces the other terms 
in the BFPE (see 0 4 of [ 9 ] ) .  It must be emphasised that the general short-time transition 
probability is related to the scalar density distribution fG and not to the scalar 
distributionfR. The behaviour offG may be interpreted in terms of fR by using equation 
(28). This fact originates because the rLDG is associated with the invariant form of the 
FPE as a partial differential equation and not with the covariant BFPE, equation (lo), 
for fR which does not preserve that form. 

4. Globular clusters with a locally isotropic velocity distribution 

We apply here the results of the previous sections in a specific case study of spherically 
symmetric globular star clusters composed of equal mass particles having a distribution 
function which depends on the velocity only through its norm. We shall introduce a 
specific coordinate transformation by using both Rosenbluth’s and Graham’s covariant 
formulations to reach the same BFPE. This transformation reduces the number of 
effective variables to three. Then we shall build the short-time transition probability 
for this specific BFPE equation. 

The stars in this cluster are held together by their self-consistent gravitational field. 
A test distribution function in phase space is governed by the BFPE. The particle 
dynamics described by this equation is dominated by the mean self-consistent gravita- 
tional field together with the mechanism of random, weak two-body encounters with 
background stars (called field stars). The distribution function of the field stars at 
every spatial point is assumed to depend only on the magnitude of the velocity (locally 
isotropic background assumption). Such systems may serve as an idealisation of 
realistic globular clusters (the so-called Wooley and Michie-King models belong to 
that category) [7]. 

At every spatial point r we choose a set of Cartesian coordinates u i  in which u3 
is directed along the radius vector r whose origin is at the centre of the cluster. In 
this Cartesian velocity subspace, we find the following functional form for the drift: 
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where ~ ( u )  depends on the magnitude of the velocity U only and B ( r ) = - B ( r ) t  
represents the mean gravitational force. The appropriate expression for the diffusion 
tensor takes the form (cf 0 3 of [9]) 

where Ql,( U )  and QL( U )  represent the diffusion parallel and perpendicular to the particle 
velocity, respectively, and depend only on the magnitude of the velocity. We can also 
write the expression for Graham’s covariant drift h ” 

h’ = h ( u ) v ’ / u  h 2 =  h ( u ) u 2 / v  h 3 =  h ( u ) ( v 3 / u ) u - B ( r )  (39) 

h ( ~ ) =  V ( V )  - f [ 2 ( Q l l ( u ) -  Q , ( u ) ) / v +  Qll(u)l+f(ln gg2)’Q11 (40) 

where h ( u )  is given by 

the prime in this equation denoting a derivative with respect to U. 
Let us write down the BFPE ( 3 2 )  for f R = f G  in Cartesian coordinates, 

Now we shall perform a coordinate transformation into new spherical coordinates 
U’ = (U, 8, cp) at the same spatial point, where 8 is the angle formed by the velocity and 
the radius vector r and cp is the azimuthal angle. The various relations between the 
two coordinate frames are given by 

(42) 
From these transformations we obtain the following expressions for the partial 

U’ = U sin 8 cos cp U’ = U sin 8 sin cp v 3  = U cos 8. 

derivatives of the new coordinates in terms of the old ones and vice versa: 

1 q cos 8 -U sin 8 0 

0 1 
sin 8 cos cp U cos e cos cp -U sin 8 sin Q 

- sin 8 sin cp U cos 8 sin cp v sin 8 cos cp a 

sin 8 cos cp 

sin c p /  v sin 8 

sin 8 sin cp 

cos cp/ u sin 8 
cos 8coscp/u cos 8sin cp/u -sin 8 / u  . 

(43a 

(43b 

These relations enable us to transform the diffusion tensor explicitly to obtain its 
diagonal form in the new coordinate system: 

0’’ = oee = Ggee = Q,( U)/ U* 
The inverse of the diffusion tensor is found immediately to take the form 

= Q l i (  U )  dQQ = GgQv = Q,( u ) /  U’ sin’ 8. (44) 

= ( Q l l ( U ) ) - ’  Ggee = U’/ Q1 GgQQ = U’ sin’ 6’1 Q, (45) 
and we also have the following expression for JgG: 
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h' transforms like a vector, whereby we find its explicit form in the new coordinates 
to be - 

i"= h ( v ) =  B cos 6 6' = B sin e / u  h'=O.  (47) 

Using (21) and (40) to eliminate k5 we finally obtain the BFPE for f G  in the new 
coordinates 

+'((%)fG} 2 v2  sin2 e ,p,p , 

In the case where f G  does not depend on the angle p, we can omit the last term 
on the RHS of (48). We observe that the spherical symmetry in the problem has reduced 
the BFPE to two dimensions in the velocity subspace and one spatial coordinate. 

We proceed to carry out the same transformation according to Rosenbluth's 
covariant approach. To do that we need the explicit expressions for the Chrisoffel 
symbols R r : .  as follows: 

RF:2=  -0 

i=i3 = - U  sin2 e 
R f : 2  = R F f 2  = 6' 

F:3 = -sin o cos e 
Rr:3  = RF:l = U-' 

R F i 3  = R p i 2  = cot 8. 
(49) 

By transforming K L  as a vector, we find that the Rosenbluth drift term of (13) is 
identical to the Graham drift term k& and so we get the same BFPE, equation (48), 

Finally, we can introduce the short-time propagator for (48). According to (36), 
for f G  = ~ R R .  

the short-time propagator for the BFPE in spherical coordinates is given by 

X = ~ D G S ( A X ~  - V COS e) .  (50)  

' P D G  can be expressed by (34) and (35) with the introduction of the Christoffel symbols 
in the Graham metric, J.. Since the diffusion tensor is diagonal, the computation 
is much simplified and gives the following expressions for the non-vanishing Christoffel 
symbols: 

~ r : ~  = -;(In 011)' 
Gr:c = -sin e cos e 

&" = - + Q ~ ~ ( u ~ /  QJ 
Gr;u = Grpu = U - '  -$(In Q)' 

J &  = -Qu sin e 
GT:e =cot e. e (51) 

5. Summary and discussion 

Having shown that both the Rosenbluth and Graham covariant formulations are 
associated with the same form-invariant BFPE for the scalar density distribution function 
fR=fG,  we have used the relations based on that equivalence to extend Graham's 
covariant formulation to the BFPE in phase space. Graham's BFPE was found to have 
the appropriate structure to introduce a functional integral expression for the short-time 
transition probability associated with that equation in arbitrary coordinates. 
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In addition to its utility in defining a functional integral, Graham’s covariant 
formulation has the additional advantage of a wider range of application than that of 
Rosenbluth, since it can be applied to any FPE in arbitrary coordinates (e.g. thermo- 
dynamic variables). 

The introduction of the short-time transition probability may have various advan- 
tages. Besides the theoretical aspects connected with the propagator for a given 
equation one can also use numerical methods unique to the path integral approach 
[lo] (see also the summary of [9]). 

The short-time transition probability is composed of two parts: the 6 function 
which relates to the deterministic behaviour in space, while the transition probability 
in the velocity subspace represents the stochastic behaviour. The same structure of 
the propagator is also found in a paper by Grabert et a1 [ l l ]  which deals with 
macroscopic thermodynamic variables. The dynamics of the variables connected with 
reversible fluxes is described by the 6 function (singular diffusion matrix) while the 
variables connected with fluctuations are described by means of the FPE and its 
associated (Graham) covariant propagator. 

We have finally applied this formalism to the evolution of globular star clusters. 
For quasisteady evolutionary stages of globular clusters one finds that the dynamical 
time for completing one revolution in a certain orbit is much larger than the timescale 
typical for velocity changes due to small-angle two-body collisions. In this case, one 
averages the collisional effects over an orbit to get an orbit-averaged two-dimensional 
FPE with the variables ( E ,  J )  where E and J denote the energy and the norm of the 
angular momentum of a star in an orbit. In this equation Rosenbluth’s metric loses 
its meaning while the use of Graham’s metric for covariant coordinate transformations 
is still valid. Such an additional transformation is desirable since under certain 
conditions one can find a new coordinate system in which the diffusion matrix becomes 
a constant [ 121. Calculations done in a coordinate system for which we have a constant 
diffusion coefficient are much simplified. 
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Appendix 1. The FPE for S and fc compared 

By writing the covariant differential F& in terms of gg2 ,  we get the equation 

,$ = -gE1/2(gg2F&),v = -g0’/‘[gg2(h” -1 2 8 G  ” L ’ S ; F ) ] , u  (Al . l )  

where the comma denotes ordinary differentiation. Multiplying both sides of (Al.l)  
by gg2 and using (18) and (21), we obtain 

(A1.2) 

which is identical to (17). 
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Appendix 2. Equivalence of the drift terms in the two formalisms 

Let us take the FPE in Cartesian coordinates as a starting point for both Graham's and 
Rosenbluth's formalisms and use the label c for that frame of reference to write the 
FPE as 

(A2.1) 

In these coordinates the Rosenbluth drift term ,I?; coincides with the Graham 
drift term k:. We observe that the values of both distribution functions fR and fG 
are the same according to (28) (,fR = ,fG = ,f). Nfw we shall perform a coordinate 
transformation into Ca. If we use (21) to express K; in the new frame and write the 
explicit transformation of ,h" as a vector, we obtain 

(A2.2) 

where we have also used (25). We shall add and subtract the term $Rfz+ggp on the 
RHS of (A2.2), where Rflp is the Christoffel symbol associated with the Rosenbluth 
metric in the new coordinates. So we get 
k:= ,K"ai7'/ava - fRrY  W P  Q ~ +  

- -  

(A2.3) 

The first two terms on the RHS are identical with the Rosenbluth drift terms of (13), 
since k = .k"afi"/au" transforms like a vector and also due to the equality gGp = dYp.  
The middle term cancels because we can identify it as a subtraction of the transformed 
Rosenbluth covariant vector ,g:yp = gG:P with its equivalent expression g&. In the 
last term we identify a subtraction of the transformed covariant vector 
,gGp a 1n(,gG)li2/av+ with its equivalent expression gEp(a ln(cgG) ' /2/aP) .  (Note that 
(In , g ~ ' ) : ,  =,gg,: is a lower index vector because it is formed by derivation of the 
scalar In ,gg2.) 
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